Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
1.
Food Res Int ; 184: 114229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609216

RESUMO

This study aimed to characterize the sensory profiles of wines produced using the flash détente (FD) technique and to identify the flavor compounds contributing to the sensory characteristics. The FD technique was applied to two major grape varieties, Cabernet Sauvignon and Marselan, from the Changli region of China to produce high-quality wines with aging potential. Compared to the traditional macerated wines, the FD wines showed greater color intensity, mainly due to the higher levels of anthocyanins. Regarding the aroma characteristics, FD wines were found to have a more pronounced fruitness, especially fresh fruit note, which was due to the contribution of higher concentration of esters. Concurrently, FD wines showed an increased sweet note which was associated with increased lactones and furanones. In addition, FD wines exhibited reduced green and floral notes due to lower levels of C6 alcohols and C13-norisoprenoids. With regard to mouthfeel, FD wines presented greater astringency and bitterness, which was due to the higher levels of phenolics. The total concentration of condensed tannins and condensed tannins for each degree of polymerization was considerably higher in FD wines due to the strong extraction of the FD technique. A significant increase in grape-derived polysaccharides and glycerol was also found in FD wines, contributing to a fuller body. This study contributed to an increase in the knowledge of the Changli region and demonstrated that the FD technique could be applied to the wine production in this region to address the negative impacts of rainfall in individual vintages.


Assuntos
Proantocianidinas , Vinho , Antocianinas , Adstringentes
2.
Food Res Int ; 181: 114125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448103

RESUMO

The perception of orosensory stimuli, which includes flavor, can vary between individuals. These individual variations in oral sensations can be due to genetic factors and it would appear that they can predict food liking and consumption. The most studied source of variation is related to bitter taste perception associated with 6-n-propylthiouracil (PROP) responsiveness. In this context, humans can be classified as non-tasters (NT), medium tasters (MT) and supertasters (ST). Evidence suggests that genetic variation in bitter taste perception contributes to differences in the level of irritation caused by alcohol perception in solutions. The aim of this investigation was to study the bitter taste sensitivity among a group of mezcal consumers and its relationship with sensory perception and preference through PROP taster status. The tests were carried out in the state of Oaxaca in Mexico. A total of 83 mezcal consumers were classified by their PROP taster status and were asked to provide sensory descriptors for five mezcal samples and rate them according to the level of liking. The three-solution test was used to classify the subjects as NT, MT, and ST, while a Multiple Factor Analysis (MFA) was used to visualize the sensory descriptors provided by these three groups. The proportion of MT subjects was 16%, while the proportion of NT and ST was 34 and 51%, respectively. The MT provided higher liking ratings for at least three mezcal samples. According to MFA, the mezcal samples were organized in a similar configuration along the two dimensions. However, NT mentioned a limited number of simple terms (strong flavor, tasteless, burning in the mouth) to describe the samples, whereas ST used a more complex vocabulary (astringent, smoky, scratchy aftertaste). These data suggest that the preference for mezcal samples was similar for non-taster and supertasters, but there are indications that the sensory perception of mezcal differs between groups.


Assuntos
Percepção Gustatória , Paladar , Humanos , Sensação , Adstringentes , Emoções
3.
Biomolecules ; 14(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397471

RESUMO

Recent studies have demonstrated that the interaction of dietary constituents with taste and olfactory receptors and nociceptors expressed in the oral cavity, nasal cavity and gastrointestinal tract regulate homeostasis through activation of the neuroendocrine system. Polyphenols, of which 8000 have been identified to date, represent the greatest diversity of secondary metabolites in plants, most of which are bitter and some of them astringent. Epidemiological studies have shown that polyphenol intake contributes to maintaining and improving cardiovascular, cognitive and sensory health. However, because polyphenols have very low bioavailability, the mechanisms of their beneficial effects are unknown. In this review, we focused on the taste of polyphenols from the perspective of sensory nutrition, summarized the results of previous studies on their relationship with bioregulation and discussed their future potential.


Assuntos
Polifenóis , Paladar , Polifenóis/farmacologia , Adstringentes/farmacologia , Dieta , Estado Nutricional
4.
J Agric Food Chem ; 72(8): 4433-4447, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354220

RESUMO

Astringency influences the sensory characteristics and flavor quality of table grapes. We tested the astringency sensory attributes of berries and investigated the concentration of flavan-3-ols/proanthocyanidins (PAs) in skins after the application of the plant growth regulators CPPU and GA3 to the flowers and young berries of the "Summer Black" grape. Our results showed that CPPU and GA3 applications increase sensory astringency perception scores and flavan-3-ol/proanthocyanidin concentrations. Using integrated transcriptomic and proteomic analysis, differentially expressed transcripts and proteins associated with growth regulator treatment were identified, including those for flavonoid biosynthesis that contribute to the changes in sensory astringency levels. Transient overexpression of candidate astringency-related regulatory genes in grape leaves revealed that VvWRKY71, in combination with VvMYBPA1 and VvMYC1, could promote the biosynthesis of proanthocyanidins, while overexpression of VvNAC83 reduced the accumulation of proanthocyanidins. However, in transient promoter studies in Nicotiana benthamiana, VvWRKY71 repressed the promoter of VvMYBPA2, while VvNAC83 had no significant effect on the promoter activity of four PA-related genes, and VvMYBPA1 was shown to activate its own promoter. This study provides new insights into the molecular mechanisms of sensory astringency formation induced by plant growth regulators in grape berries.


Assuntos
Polietilenoglicóis , Poliuretanos , Proantocianidinas , Vitis , Proantocianidinas/metabolismo , Vitis/metabolismo , Frutas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Adstringentes/metabolismo , Proteômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Genes Reguladores , Regulação da Expressão Gênica de Plantas
5.
J Agric Food Chem ; 72(7): 3654-3663, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329502

RESUMO

The phenolic compounds (PCs) are the primary components responsible for the astringency of tea infusions, and this astringency is intricately linked to the in situ oral metabolism of PCs in saliva. Initially, a total of 54 PCs were identified in tea infusions by electrospray mass spectrometry (ESI-MS). Subsequently, an in vivo metabolism analysis of PCs during varying drinking times and oral locations was conducted by both paper spray mass spectrometry (PS-MS) and sensory evaluation. The metabolism of PCs within oral saliva was a prolonged process, the residual PCs were distributed across diverse oral regions after drinking tea infusion, and the higher residual PC content reflected the stronger astringency intensity. Furthermore, an in vitro metabolism analysis of PCs under varied reaction temperatures and durations was performed by ESI-MS and turbidimetry. As the reaction time extended, more PCs in tea was interacting with saliva. Moreover, the higher temperatures facilitated this interaction between PCs and saliva. Therefore, this investigation establishes a foundation for further elucidating the mechanisms underlying astringency formation.


Assuntos
Adstringentes , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Chá/química , Fenóis , Nefelometria e Turbidimetria
6.
Food Res Int ; 178: 113964, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309881

RESUMO

Astringency corresponds to the sensation of dryness and roughness that is experienced in the oral cavity in association with the interaction between salivary proteins and food polyphenols. In this study, the phenolic composition of seven varietal wines, the intensity of astringency they evoke and the physicochemical reactivity of these wines with whole human saliva were evaluated. Phenolic composition of wines was characterized by spectrophotometry and HPLC chromatography. Intensity of astringency was evaluated by trained sensory panels. Saliva from a single volunteer subject was used to assess wine-saliva interactions. To this end, binary mixtures were produced at different v/v wine/saliva ratios and each of them assayed for the ability of the salivary protein to diffuse on a cellulose membrane (diffusion test) and to remain in solution (precipitation test). Physicochemical reactivities between wine components and the protein fraction of saliva were contrasted against the astringency and the phenolic profile of each varietal wine. The study supports the view that astringency depends on physicochemical interactions between two complex matrices -wine and saliva- and not between some of their particular components.


Assuntos
Vinho , Humanos , Vinho/análise , Saliva/química , Paladar , Adstringentes/análise , Polifenóis/análise , Fenóis/análise , Proteínas e Peptídeos Salivares/análise
7.
Biophys Chem ; 307: 107178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277878

RESUMO

Tannins are amphiphilic molecules, often polymeric, which can be generally described as a core containing hydrophobic aromatic rings surrounded by hydroxyl groups. They have been known for millennia and are part of human culture. They are ubiquitous in nature and are best known in the context of wine and tea tasting and food cultures. However, they are also very useful for human health, as they are powerful antioxidants capable of combating the constant aggressions of everyday life. However, their mode of action is only just beginning to be understood. This review, using physicochemical concepts, attempts to summarize current knowledge and present an integrated view of the complex relationship between tannins, proteins and lipids, in the context of wine drinking while eating. There are many thermodynamic equilibria governing the interactions between tannins, saliva proteins, lipid droplets in food, membranes and the taste receptors embedded in them. Taste sensations can be explained using these multiple equilibria: for example, astringency (dry mouth) can be explained by the strong binding of tannin micelles to the proline-rich proteins of saliva, suppressing their lubricating action on the palate. In the presence of lipid droplets in food, the equilibrium is shifted towards tannin-lipid complexes, a situation that reduces the astringency perceived when consuming a tannic wine with fatty foods, the so-called "camembert effect". Tannins bind preferentially to taste receptors located in mouth membranes, but can also fluidify lipids in the non-keratinized mucous membranes of the mouth, which can impair the functioning of taste receptors there. Cholesterol, present in large quantities in keratinized mucous membranes, stiffens them and thus prevents tannins from disrupting the conduction of information through other taste receptors. As tannins assemble and disassemble depending on whether they are in contact with proteins, lipids or taste receptors, a perspective on their potential use in the context of neurodegenerative diseases where fibrillation is a key phenomenon will also be discussed.


Assuntos
Doenças Neurodegenerativas , Vinho , Humanos , Taninos/química , Taninos/metabolismo , Vinho/análise , Percepção Gustatória , Adstringentes/química , Lipídeos
8.
Food Chem ; 441: 138340, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38176146

RESUMO

This present study investigated the masking effect of high methoxyl pectin, xanthan gum, and gum Arabic on the astringency of the traditional herbal formula Triphala and further examined the mechanism of polysaccharide reducing astringency. Results of sensory evaluation and electronic tongue illustrated that 0.6 % pectin, 0.3 % xanthan gum, and 2 % gum Arabic had a substantial deastringent effect. The polyphenols in Triphala are basically hydrolysable tannins, which with high degree of gallic acylation may be the main astringent component of Triphala. Moreover, the three polysaccharides can combine with ß-casein through CO and NH groups to form soluble binary complexes and decrease the secondary structure of ß-casein. When polysaccharides were added to the Triphala-protein system, polyphenol-protein precipitation was also diminished, and they were capable of forming soluble ternary complexes. Consequently, the competition between polysaccharides and polyphenols for binding salivary proteins and the formation of ternary complexes help decrease the astringency of Triphala.


Assuntos
Caseínas , Goma Arábica , Extratos Vegetais , Goma Arábica/química , Polissacarídeos/química , Pectinas/química , Polifenóis , Adstringentes
9.
Food Chem ; 442: 138490, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38245989

RESUMO

In this study, the effects of thermal treatments on the structural, rheological, water mobility, antioxidant, and astringency properties of proanthocyanidin (PA)-pectin binary complexes were investigated. Thermal treatments (25, 63, or 85 °C) significantly decreased the particle size but increased the molecular weight of PA-pectin complexes, which indicated that heating altered the intermolecular and intramolecular interactions between PA and pectin. The thermal treatments reduced the apparent viscosity of both pectin and PA-pectin complexes, but the presence of proanthocyanidins (PAs) increased the apparent viscosity and water mobility of the PA-pectin complexes. Antioxidant activity analysis showed that the presence of pectin slightly reduced the antioxidant activity of the PAs, but there were no significant changes in the total phenolic content and antioxidant activity after thermal treatment. Finally, we found that pectin reduced the astringency of the PAs by forming PA-pectin complexes. Moreover, the thermal treatments also significantly reduced the astringency of the PA-pectin complexes.


Assuntos
Pectinas , Proantocianidinas , Pectinas/química , Antioxidantes/química , Adstringentes , Viscosidade , Água , Reologia
10.
J Agric Food Chem ; 71(48): 19142-19153, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37827989

RESUMO

The pile fermentation process of Fuzhuan brick tea is unique in that it involves preheating without the use of starter cultures. The detailed metabolite changes and their drivers during this procedure are not known. Characterizing these unknown changes that occur in the metabolites and microbes during pile fermentation of Fuzhuan brick tea is important for industrial modernization of this traditional fermented food. Using microbial DNA amplicon sequencing, mass spectrometry-based untargeted metabolomics, and feature-based molecular networking, we herein reveal that significant changes in the microbial community occur before changes in the metabolite profile. These changes were characterized by a decrease in Klebsiella and Aspergillus, alongside an increase in Bacillus and Eurotium. The decrease in lysophosphatidylcholines, unsaturated fatty acids, and some astringent flavan-3-ols and bitter amino acids, as well as the increase in some less astringent flavan-3-ols and sweet or umami amino acids, contributed importantly to the overall changes observed in the metabolite profile. The majority of these changes was caused by bacterial metabolism and the corresponding heat generated by it.


Assuntos
Microbiota , Chá , Chá/química , Fermentação , Adstringentes , Aminoácidos
11.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895041

RESUMO

Persimmon fruit has a high nutritional value and significantly varies between pollination-constant astringent (PCA) and pollination-constant non-astringent (PCNA) persimmons. The astringency type affects sugar, flavonoids, and tannin accumulation and is well known in persimmon fruit. However, the impact of the fruit astringency type on ascorbic acid (AsA) accumulation is limited. In this study, typical PCA varieties ('Huojing' and 'Zhongshi5') and PCNA varieties ('Yohou' and 'Jiro') of persimmon fruit were sampled at four developing stages (S1-S4) to provide valuable information on AsA content variation in PCA and PCNA persimmon. Persimmon fruit is rich in ascorbic acid; the AsA content of the four varieties 'Zhongshi5', 'Huojing', 'Jiro', and 'Youhou' mature fruit reached 104.49, 48.69, 69.69, and 47.48 mg/100 g. Fruit of the same astringency type persimmon showed a similar AsA accumulation pattern. AsA content was significantly higher in PCA than PCNA fruit at S1-S3. The initial KEGG analysis of metabolites showed that galactose metabolism is the major biosynthetic pathway of AsA in persimmon fruit. There were significant differences in galactose pathway-related metabolite content in developing PCA and PCNA fruit, such as Lactose, D-Tagatose, and D-Sorbitol content in PCA being higher than that of PCNA. Combined gene expression and WGCNA analyses showed that the expression of the GME (evm.TU.contig4144.37) gene was higher in PCA-type than in PCNA-type fruit in S1-S3 and exhibited the highest correlation with AsA content (r = 690 **, p < 0.01). Four hub genes, including the DNA methylation gene, methyltransferase gene, F-box, and Actin-like Protein, were identified as potential regulators of the GME gene. These results provide basic information on how astringency types affect AsA accumulation and will provide valuable information for further investigation on AsA content variation in persimmon fruit.


Assuntos
Diospyros , Proantocianidinas , Diospyros/genética , Diospyros/metabolismo , Proantocianidinas/metabolismo , Adstringentes/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transcriptoma , Frutas/genética , Frutas/metabolismo , Polinização/genética , Ácido Ascórbico/metabolismo , Galactose/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894783

RESUMO

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) stands as one of the pivotal afforestation tree species and timber resources in southern China. Nevertheless, the occurrence of seed abortion and a notably high proportion of astringent seeds significantly curtail the yield and quality of elite seeds, resulting in substantial economic losses. The development of astringent seeds is accompanied by significant physiological and biochemical alterations. Here, the first combined lipidomic and metabolomic analysis was performed to gain a comprehensive understanding of astringent seed traits. A total of 744 metabolites and 616 lipids were detected, of which 489 differential metabolites and 101 differential lipids were identified. In astringent seeds, most flavonoids and tannins, as well as proline and γ-aminobutyric acid, were more accumulated, along with a notable decrease in lipid unsaturation, indicating oxidative stress in the cells of astringent seeds. Conversely, numerous elemental metabolites were less accumulated, including amino acids and their derivatives, saccharides and alcohols, organic acids and nucleotides and their derivatives. Meanwhile, most lipid subclasses, mainly associated with energy storage (triglyceride and diglyceride) and cell membrane composition (phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine), also exhibited significant reductions. These results reflected a disruption in the cellular system or the occurrence of cell death, causing a reduction in viable cells within astringent seeds. Furthermore, only one lipid subclass, sphingosine phosphate (SoP), was more accumulated in astringent seeds. Additionally, lower accumulation of indole-3-acetic acid and more accumulation of salicylic acid (SA) were also identified in astringent seeds. Both SA and SoP were closely associated with the promotion of programmed cell death in astringent seeds. Collectively, our study revealed significant abnormal changes in phytohormones, lipids and various metabolites in astringent seeds, allowing us to propose a model for the development of astringent seeds in Chinese fir based on existing research and our findings. This work enriches our comprehension of astringent seeds and presents valuable bioindicators for the identification of astringent seeds.


Assuntos
Cunninghamia , Cunninghamia/metabolismo , Adstringentes/metabolismo , Lipidômica , Sementes , Lipídeos
13.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764251

RESUMO

Many authors have investigated the role of mannoproteins on wine quality, but very few have analyzed the use of grape-derived polysaccharides as they are not commercially available. In this study, purified grape-derived polysaccharides from red wine (WPP) and winemaking by-products (DWRP: Distilled Washing Residues Polysaccharides) were used as potential fining agents to modulate white wine flavor. Phenolics and volatile compounds were analyzed in the control and wines treated with WPP, DWRP, and commercial mannoproteins (CMs) after one and twelve months of bottling, and a sensory analysis was conducted. WPP and DWRP, rich in rhamnogalacturonans-II, showed themselves to be good modulators of wine aroma and astringency. Improvement in wine aroma was related to an increase in all volatile families expect higher alcohols and volatile acids. The modulation of astringency and bitterness was related to a reduction in the proanthocyanidin content and its mean degree of polymerization. Extracts with polysaccharides with higher protein contents presented a higher retention of volatile compounds, and DWRP extract had more positive effects on the overall aroma. Our novel results present the possibility of obtaining valuable polysaccharides from distilled washing residues of wine pomaces, which could promote its valorization as a by-product. This is the first time the potential use of this by-product has been described.


Assuntos
Vitis , Vinho , Humanos , Ramnogalacturonanos , Polissacarídeos/farmacologia , Adstringentes
14.
J Chromatogr A ; 1707: 464266, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37572383

RESUMO

In-mouth interaction of red wine compounds with salivary proteins is a primary event allegedly responsible for eliciting the mouth-feel sensation of astringency. Those interactions have been currently associated with precipitation of salivary protein/polyphenol complexes. However, such single physicochemical evidence for interaction does not account for the complexity of astringency. This study aimed to develop a paper chromatography method to assess interactions between red wine and the salivary protein fraction using stepwise series of red wine/saliva binary mixtures from 100% wine to 100% saliva ("Alpha and Omega series"). Aliquots of each one of the mixtures were spotted on a cellulose membrane to scrutinize independently the distribution areas of wine components (naturally pink-colored) and salivary protein (stained blue in Coomassie Brilliant R-250). This double target detection revealed interactions between saliva and red wine components along most of the quantitative Alpha and Omega series, a point of equivalence corresponding to maximum interactivity for both complex reactants and a non-diffusible sub-fraction of saliva displaying the highest interactivity. The results indicate a novel way to assess quantitatively physicochemical interactions between red wines and human saliva but also provide new lights to approach the identification of molecular salivary structures involved in triggering astringency.


Assuntos
Saliva , Vinho , Humanos , Saliva/química , Vinho/análise , Polifenóis/análise , Adstringentes/análise , Adstringentes/química , Adstringentes/metabolismo , Proteínas e Peptídeos Salivares
15.
J Integr Plant Biol ; 65(10): 2304-2319, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37526209

RESUMO

Proanthocyanidins (PAs) are specialized metabolites that influence persimmon fruit quality. Normal astringent (A)-type and non-astringent (NA)-type mutants show significant variation in PA accumulation, but the influencing mechanism remains unclear. In this study, among the six identified DTXs/MATEs proteins associated with PA accumulation, we observed that allelic variation and preferential transport by DkDTX5/MATE5 induced variation in PA accumulation for A-type and NA-type fruit. The expression pattern of DkDTX5/MATE5 was correlated with PA accumulation in NA-type fruit. Upregulation and downregulation of DkDTX5/MATE5 promoted and inhibited PA accumulation, respectively, in the NA-type fruit. Interestingly, transporter assays of Xenopus laevis oocytes indicated that DkDTX5/MATE5 preferentially transported the PA precursors catechin, epicatechin, and epicatechin gallate, resulting in their increased ratios relative to the total PAs, which was the main source of variation in PA accumulation between the A-type and NA-type. The allele lacking Ser-84 in DkDTX5/MATE5 was identified as a dominantly expressed gene in the A-type and lost its transport function. Site-directed mutagenesis revealed that DkDTX5/MATE5 binds to PA precursors via Ser-84. These findings clarify the association between the transporter function of DkDTX5/MATE5 and PA variation, and can contribute to the breeding of new cultivars with improved fruit quality.


Assuntos
Diospyros , Proantocianidinas , Diospyros/genética , Diospyros/metabolismo , Adstringentes/metabolismo , Frutas/genética , Frutas/metabolismo , Melhoramento Vegetal , Proantocianidinas/metabolismo
16.
Compr Rev Food Sci Food Saf ; 22(4): 3328-3365, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37282812

RESUMO

Astringency and more generally mouthfeel perception are relevant to the overall quality of the wine. However, their origin and description are still uncertain and are constantly updating. Additionally, the terminology related to mouthfeel properties is expansive and extremely diversified, characterized by common traditional terms as well as novel recently adopted descriptors. In this context, this review evaluated the mention frequency of astringent subqualities and other mouthfeel attributes in the scientific literature of the last decades (2000-August 17, 2022). One hundred and twenty-five scientific publications have been selected and classified based on wine typology, aim, and instrumental-sensorial methods adopted. Dry resulted as the most frequent astringent subquality (10% for red wines, 8.6% for white wines), while body-and related terms-is a common mouthfeel sensation for different wine types, although its concept is still vague. Alongside, promising analytical and instrumental techniques investigating and simulating the in-mouth properties are discussed in detail, such as rheology for the viscosity and tribology for the lubrication loss, as well as the different approaches for the quantitative and qualitative evaluation of the interaction between salivary proteins and astringency markers. A focus on the phenolic compounds involved in the tactile perception was conducted, with tannins being the compounds conventionally found responsible for astringency. Nevertheless, other non-tannic polyphenolic classes (i.e., flavonols, phenolic acids, anthocyanins, anthocyanin-derivative pigments) as well as chemical-physical factors and the wine matrix (i.e., polysaccharides, mannoproteins, ethanol, glycerol, and pH) can also contribute to the wine in-mouth sensory profile. An overview of mouthfeel perception, factors involved, and its vocabulary is useful for enologists and consumers.


Assuntos
Vinho , Vinho/análise , Paladar , Adstringentes/análise , Antocianinas , Sensação
17.
Food Res Int ; 170: 112967, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316010

RESUMO

Preference for vegetables is influenced by various factors, including demographic, psychological, socio-environmental, and genetic factors. This study confirmed that age, pickiness, and perceptual attributes were predictors of preference for vegetables and examined how preference for vegetables and their perceptual attributes varies with age and pickiness. Children (8-14 years, n = 420), youth (15-34 years, n = 569), middle-aged adults (35-64 years, n = 726), and older adults (65-85 years, n = 270) were asked which vegetables they liked (or disliked) and which perceptual attributes of each vegetable they liked (or disliked). On the basis of their responses, an overall preference score and a preference sub-score for each perceptual attribute were calculated. Participants in each age group were classified into four statuses (non-, mild, moderate, and severe) according to their pickiness scores. Multiple regression analysis revealed that age and preference sub-scores for eight perceptual attributes (sweetness, sourness, bitterness, umami, pungency, orthonasal aroma, texture, and appearance) were positive predictors of overall preference score and that pickiness score and four perceptual attributes (saltiness, astringency, retronasal aroma, and aftertaste) were negative predictors. In addition, overall preference score and preference sub-scores for perceptual attributes other than saltiness increased with increasing age group and decreasing picker status; however, preference sub-scores for at least one of the six perceptual attributes (bitterness, astringency, pungency, orthonasal aroma, retronasal aroma, and aftertaste) exhibited negative values in children, youth, and pickers (mild, moderate, and severe). The increase in preference for these perceptual attributes might be an indicator of the adultization of food perception and the expansion of food acceptance.


Assuntos
Adstringentes , Verduras , Criança , Pessoa de Meia-Idade , Adolescente , Humanos , Idoso , Emoções
18.
Food Res Int ; 170: 112994, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316067

RESUMO

Astringency as the complex sensory of drying or shrinking can be perceived from natural foods, including abundant phenolic compounds. Up to now, there have been two possible astringency perception mechanisms of phenolic compounds. The first possible mechanism involved chemosensors and mechanosensors and took salivary binding proteins as the premise. Although piecemeal reports about chemosensors, friction mechanosensor's perception mechanisms were absent. There might be another perception way because a part of astringent phenolic compounds also triggered astringency although they could not bind with salivary proteins, however, the specific mechanism was unclear. Structures caused the differences in astringency perception mechanisms and intensities. Except for structures, other influencing factors also changed astringency perception intensity and aimed to decrease it, which probably ignored the health-promoting effects of phenolic compounds. Therefore, we roundly summarized the chemosensor's perception processes of the first mechanism. Meanwhile, we speculated that friction mechanosensor's probably activated Piezo2 ion channel on cell membranes. Phenolic compounds directly binds with oral epithelial cells, activating Piezo2 ion channel probably the another astringency perception mechanism. Except for structure, the increase of pH values, ethanol concentrations, and viscosity not only lowered astringency perception but were beneficial to improve the bioaccessibility and bioavailability of astringent phenolic compounds, which contributed to stronger antioxidant, anti-inflammatory, antiaging and anticancer effects.


Assuntos
Adstringentes , Compostos Fitoquímicos , Adstringentes/farmacologia , Compostos Fitoquímicos/farmacologia , Antioxidantes , Disponibilidade Biológica , Fenóis , Percepção
19.
J Food Sci ; 88(6): 2339-2352, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138542

RESUMO

Umami amino acids inhibit the bitter and astringent taste presentation of catechins, which is essential for the taste regulation of green tea. In this study, the concentration-intensity trends and taste threshold properties of major catechin monomers were investigated using an electronic tongue. The taste and chemical structure interactions between the ester-type catechins and theanine, glutamic acid (Glu), and aspartic acid (Asp) were further analyzed by in vitro simulation and analysis of their reciprocal chemical structures. The results showed that the bitterness and astringency of the major catechin monomers increased with increasing concentration, and their bitterness thresholds and their electron tongue response values were higher than those of the astringent values, while the bitterness and astringency of the ester-type catechins were higher than those of the nonester type. The three amino acids inhibited the bitterness intensity of ester catechins (epigallocatechin gallate, epicatechin gallate, and gallocatechin gallate) at different concentrations, and the effects on the astringency intensity of ester catechins were complicated. Ester catechins significantly enhanced the umami intensity of theanine, Glu, and Asp at different concentrations. Their reciprocal chemical structures showed that hydrogen bonding was the main interaction force between the three ester-type catechins and the umami amino acids, with theanine and Glu interacting more strongly with ester-type catechins than Asp, and Glu having a lower binding energy to ester-type catechins, which bonded more easily.


Assuntos
Catequina , Chá , Chá/química , Catequina/análise , Aminoácidos , Nariz Eletrônico , Adstringentes/análise , Ácido Glutâmico
20.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239943

RESUMO

Persimmon (Diospyros kaki) fruit have significant variation between pollination-constant non-astringent (PCNA) and pollination-constant astringent (PCA) persimmons. The astringency type affects not only the soluble tannin concentration but also the accumulation of individual sugars. Thus, we comprehensively investigate the gene expression and metabolite profiles of individual sugars to resolve the formation of flavor differences in PCNA and PCA persimmon fruit. The results showed that soluble sugar, starch content, sucrose synthase, and sucrose invertase were significantly different between PCNA and PCA persimmon fruit. The sucrose and starch metabolism pathway was considerably enriched, and six sugar metabolites involving this pathway were significantly differentially accumulated. In addition, the expression patterns of diferentially expressed genes (such as bglX, eglC, Cel, TPS, SUS, and TREH genes) were significantly correlated with the content of deferentially accumulated metabolites (such as starch, sucrose, and trehalose) in the sucrose and starch metabolism pathway. These results indicated that the sucrose and starch metabolism pathway maintained a central position of sugar metabolism between PCNA and PCA persimmon fruit. Our results provide a theoretical basis for exploring functional genes related to sugar metabolism and provide useful resources for future studies on the flavor differences between PCNA and PCA persimmon fruit.


Assuntos
Diospyros , Proantocianidinas , Transcriptoma , Diospyros/genética , Diospyros/metabolismo , Açúcares/metabolismo , Proantocianidinas/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Adstringentes/metabolismo , Frutas/genética , Frutas/metabolismo , Polinização/genética , Metaboloma , Sacarose/metabolismo , Amido/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...